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Starting with a simple characterization of pairs of rigidly joined straight world 
lines, successive generalizations are obtained up to the most general case which 
allows us to establish the various definitions of rigid motions in relativity (both 
special and general). 

1. INTRODUCTION 

Since Born (1909) gave the first definition, many other definitions of 
rigidity have been given, some of them in order to overcome objections as to 
the possibility of introducing the rigid body concept, and others so as to 
alleviate the restrictive conditions imposed by Born's definition. 

The problem was conceptually clarified by the concept of kinematical 
rigidity (Synge, 1972), but the problem of deriving the various admissible 
definitions still remains. This paper is a new approach to this question. 

2. PRELIMINARY DEFINITIONS 

Let us consider a four-dimensional flat hyperbolic manifold of class C 2 
with time orientation. As is usual, we will call the points of this manifold 
events and the timelike curves, world lines. 

In an orthonormal and global coordinate system, (0,ei), whose ex- 
istence is ensured by the structure considered, let us choose for the metric 
the expression 

3 
ds2=- E (dx~)2+(dx4) 2 (1) 

a = l  

and also the vector e 4 to be oriented towards the future. 
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Definition 1. An /-like reference system (IRS) is a congruence of 
straight parallel world lines. 

We denote by I o the IRS in which the direction of the world lines is 
indicated by e 4. Next, we give the following definition. 

Definition 2. Two arbitrary world lines, L~, L 2, of an IRS, I R, form the 
end points of a measuring rod at rest with respect to I R (MRIR). 

It is clear from Definition 2 that if x r = x r ( s )  and x ' r=x '~(s  ') are two 
natural representations of two world lines L 1 and L 2 of an IRS, I R, and if x r 
and x '~ are the respective coordinates of two events 0~ and 0 2 of L~ and L 2 

in such a way that the vector 71 ~ = x  'r - x  ~ is orthogonal to L] in 01, then ~/~ is 
orthogonal to L 2 in 0 2. On the other hand, it can be verified that 7/~ has a 
constant modulus (which is positive, because it is spacelike). 

The measuring rod, which we denote by (LI,  L2), is formed by all the 
world lines L: x 'r =x'~(s)  of I R which satisfy 

x t r = x r ( s ) " ~ k n  r ( 0 ~ k ~  1) (2) 

For ?t=0, 7 ~  1, the world lines obtained are the end points L~ and L 2 of the 
MRI R under consideration. 

Definition 3. The length of an MRI R, (L  1, L2), in I 0 is the modulus of 
the vector hr. 

Definition 4. An MRI R, (L  l, L2), with length (7/r*/r) 1/2 in I0, has the e 1 
direction if and only if 7/" = 0, (a  = 2, 3). (Similarly for e 2 and e 3.) 

3. CONSTANT RIGID M O T I O N S  

Unless we state otherwise we will exclusively use IRSs, [IR,(0,ei)], 
[I~,(0',e~)]" �9 �9 related by restricted Lorentz transformations of the follow- 

ing type: 

xt l  = ( x l  --l)  t ) 'y, - ~ -  "~, = X  2 , 

_ v 2 '/2 =ct]  x4 (3) 
J 

(as is known, this is not an essential restriction). 
Let ~ be the class of straight world lines parallel to the 2-flat (x  ], x 4) 

of a system of the type we are considering. We can now give the following 
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definition: 

Definition 5. If L 1, L2 E ~ 1,. 

( L L, L2 ) e ~ J o )  cg~ • ~ 3 I R / L  1, L 2 eI R (4) 

where by means of ~ J o )  we denote the relation "to be rigidly joined." 

It can be easily verified that ~ J o )  is a relation of equivalence'. On the 
other hand, if we denote by l o the length in 1oR of an MRIoR in the e 1 
direction, it is easy to see the following: 

If LI63~vJ(I)L2, then, in the system [IoR,(0,eo,)] in which L 1, L 2 CIo., the 
following conditions 

[o4,(/0,)- ' --Oo 

X(fl2) ( to1 ) -- X('81) (/0 2 ) = 008 (0o, Oot3 const, /3=2,3)  (5) 

hold for arbitrary /01 and /02. 
Theorem 1. If [IR,(0,ei)] is related to [Io,,(0,eoi)] by (3) and if we 
denote by ! the length in I k of the MRIoR which we have previously 
determined, then the conditions 

[ 4 ) ( t ) - 4 ) ( t ) ] l - ' = ~  

x 2)( t ) - t (o, const, f l=2 ,3 )  (6) 

are satisfied in [IR,(0,ei)], where xlj ) ( i=1,2,3;  j = l , 2 )  are the 
coordinates in [ I  R, (0, e i)] of the events of two lines L 1 and L 2 which 
belong to IoR. 

The demonstration is easy because between the coordinates x{j) of the 
events of L 1 and L 2 in [ IoR, (0, %,)] and the coordinates xlj)(t) in [ IR, (0, e i)] 
corresponding to the value t, there exists the relation 

(7) 

Then, using l = l o 7 -  l, we obtain 

0 0 =0 ,  00~ =0~ ( /3=2,3)  (8) 

i.e., (6) and (5) are of the same type and have the same values for the 
constants 0 and 0~. 
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On the other hand, differentiating (6) with respect to t, we have 

d d [ x a ) ( , ) ] -  [x, , , ( , ) ]  : o  

thus, we can state the following theorem: 

Theorem 2. If L1, L2 ~ d~l and fulfil the conditions (6) in a system 
[IR,(O, ei)] t h e n  LI~  . 

Consequently, we can adopt the following definition as equivalent to 
Definition 5. 

Definition 6. If L~, L 2 ~ff~,  LI@J(1)L 2 if, and only if, the conditions 
(6) are fulfilled. 

Then, considering that a world line is the history of a particle, we can 
give, in kinematical terms, the following definition: 

Definition 7. The motion in a system [IR,(0,ei)] of a set of particles of 
~ is a rigid motion when each pair of particles fulfils the conditions (6). 

From the Definitions 1, 2, and 7 it follows that the motion in a system 
[IR,(0,e~)] of any MRI% [1% related to I R by (3)] is rigid. Another 
consequence is that an IRS appears as a class of equivalence in ~ with 
respect to @J(l). 

4. ARBITRARY RECTILINEAR MOTIONS 

Let us consider a system [I0o,(0,eo )] and let (x~n, to)(~c~2 ~, to) be the 
coordinates m [I oR, (0, %,)] of two arbitrary events of the world lines L 1 and 
L 2, respectively, in such a way that LI,  L 2 ~I%.  If [IR,(0,ei)] is related to 
[I%,(0,e0) ] by (3) then, in this new system, the events we are considering 
have the coordinates (x~), tl) arid (x(~), t 2) associated to them by 

oX, = + v , , ) , ,  (B) 
'o 1 

t o = ( t  B + ~-~X(B ) )y  (13= 1,2) (9) 

From the last two equations in (9) we obtain 

(lO) 

whereas from the first two, we have 

.~2) - x~,) = [ ( x~2) - x~,) ) + v (  t2 - t, ) ] ~ (11) 
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or, taking into account (5) and (10), 

x~2)( t~ )--  x~l)(t I ) = 0/o'/ (12) 

On the other hand, if the conditions 

t z - t ~ = - ( v / c 2 ) O l o v  ( a = 2 , 3 )  03) 

are verified in [I R, (0,ei)], then the corresponding events are simultaneously 
observed in [Io~, (0,e0,)] and we also have x~2)(t0)-0x~o(t0)= Ol o. 

Now, consider the class ~2(~2 D ~ t) of world lines in such a way that 
their 4-direction in each of their events is parallel to the 2-plane (x ~, x 4) of a 
given system [I R, (0, e/)]. Taking this into account we adopt the following 
definition: 

Definition 8. L 2 is rigidly joined to L~ (we denote this situation with the 
notation L2~J(2)L~) if, and only if, each event of L~, with coordinates 
(x~o(t~), tl), has one (and only one) event of L2, with coordinates 
(xgz)(t2), tz), associated to it by 

xl2)(t2l-x ,)(t,)=0Zor 

t2 - tl = (Ul)tl c -201oy 

where l o is the length of an MRI  R in the e I direction and (ul)tL is the 
3-velocity of L~ in t = t  I. 

Theorem 3. If L 1 and L 2 are two lines of (~2 in such a way that 
LE~J(2)L l and also that their 4-direction is parallel to e 4 for the 
value t= to ,  then [(0lo)2+022+0~]1/2 represents the three- 
dimensional spatial distance, Dto, measured in [I,~,(0,ei) 1 for the 
value to, between the particles corresponding to those lines. 

This is so because setting (ul)~o=0 in the last of the equations (14), we 
have t 2 = t~ = to; and putting this result into the three first equations of (14), 
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we obtain 

X~2)(to)--X~I)(to):OI 0 

x(~)( t  o ) - -  x ~ ) (  t o ) = 0 a 

from which we conclude 
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On the other hand 

(Olo) 2 
[X~)(12)--X~)(tl)'t2--ll] 2 -  ~--2 

Dto=[(Olo)2+O] +02] 1/2 (16) 

the relation we wanted to prove. 

Theorem 4. L 2 ~J(2)L1 if and only if Vt I the vector a r = ( x ~ ) ( t 2 ) -  
x~)(q), t 2 - t 1) satisfies 

x~(t: )-xL(t~ ) % (17) 

-q ]  -Dto ( a = 2 , 3 )  

We start by observing that the 4-direction of L I in such an 
event is determined by ((ul)t,,O,O, 1). Then, from the last relation 
(14), we have 

(Ul)'1010~--c2(t2 - t l  ) ~-0 (18) 

and, taking into account the first relation in (14), we have 

(u,)t,[x~2)(t2)-x~,)(t,)]-c2(t2--tl)=O (19 )  

~o~+o2 (Olo): -~ (",)~, =D2,o 
Y 

(20) 

Conversely, if the corresponding events of L t and L 2 are linked 
by the relations (17) then L2~J(2)L1; because from the last relation 
in (17) we deduce 

[x~z)(tz)--x~l)(tl)]2--c2(t2-tl)2=(Olo) 2 (21) 

(~=2,3) (15) 
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and from the first we deduce 

(u~)t'[xl2)( t 2 ) -  x~,)(t,)] (22) /'2 - -  tl - -  c2 

then, putting this result into (21), we obtain 

2 

1 1 2 t ( ~ ' "  (~'".l ' j[xl2){t2~-x!l){tl'lJx-gelo'~2 
(u,),, 

(23) 
C2 

i.e., the first of the relations (14), which, when substituted in (22) gives us 
the last relation (14), which is what we wished to demonstrate. 

Theorem 5. If LI, L z E ~  2 then (u2)t2=(ul)q ~(ul)t=k; Vt 1 (k 
const) 

From the last relation in (14) we have 

dt2dl 1 : 1 + ~ - t  l 

and from the first relation in (14) 

( U l ) t |  Ol 0 ] 
c 2 2 

dt2 
(U2)t2~l --(Ul)tl= J~l (010"~) 

By substitution of (24) in (25) we have 

(u2)t2=[ (ul)t~+ ~(Ol~ 1+ d [ ' - ~  (ul)tlOl~ 

(24) 

(25) 

(26) 

and the theorem is demonstrated. 
From this theorem it is immediately evident that Definition 8 contains 

Definition 6 as a particular case. On the other hand, it can be verified 
without difficulty that ~ J~2) is a relation of equivalence. 

Definition 9. The motion of a set of particles of d~ 2 in a system 
[I  R, (0, e i)] is a rigid motion when each pair of particles fulfils the conditions 
(14). 
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5. ARBITRARY MOTIONS 

Consider two arbitrary world lines L l and L 2 whose equations in a 
given system [IR,(O, ei) ] are, respectively, x r = Xr(S ) and x r = xr(~ ), where 

(1) (l)  (2) (2) 
s and g are the separations of those lines. (In this section we will use, for 
simplicity, Minkowskian coordinates.) Theorem 4 suggests the following 
generalization. 

Definition t0. L 2 is rigidly joined to L l (we will use the symbol 
L2~J(3)L1) when for any event of L l, with coordinates Xr, there exists a 

(1) 
unique event of L 2, with coordinates x~, in such a way that the vector 

~/~ = xr - x~ satisfies (2) 
(2) (1) 

~/~=D 2 (27a) 

Xr~r=O (Dcons t . )  (27b) 
(1) 

where ?t r - -  d x  r /ds .  
(1) O) 

The relation ~, J(3) is symmetric because from (27a) we have ( -~ r )2  = D 2 
and on the other hand, because of the fact that xr = Xr + Or we have the 

(2) (1) 
relation 

dx  r 

nrXr=nr -dZ  
(2) 

(28) 

where we use ?~r to denote the vector dxr(g) /dg.  
(2) (2) 

Nevertheless, in contrast to the previous situations, ~J(3) is not transi- 
tive, as we can see from the following example. 

Let L 1, L 2, and L 3 be three world lines whose equations in a given 
system [I R, (0, ei)] are 

I x I = r c o s w t  

~ x l = r + h  
L , l x 2 = r s i n w t  ' L2(x  =0,  a = 1 , 2 , 3 } ,  L3lxz_=x3=O (29) 

X -=0 
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where r, ~0, and h are positive constants that satisfy the conditions 

h>r ,  O<r<c/~o (30) 

Then L26~J(3)L3 because for any x r E L  2 the vector ~r = ( r + h , 0 , 0 , 0 )  satis- 
(2) 

ties (27a) and (27b). Also LI~J(3)L2 because if x r is an arbitrary event of 
(1) 

0) 2 
L l then, considering the event xr =(0,0,0,  X4) , we have x ~ -  x r =r2 ;  

(2) (D (2) 
whereas, knowing that )~r = ( - ro~  sin ~t,  rco cos oot, 0, ic), we have 

(1) 
?~(x r -  x~)=r2o~(sinoatcosoat--sinoatcosoat)=O. Nevertheless L l is not 
(1) (2) (1) 
rigidly joined to L 3. In order to verify this, let us consider the event 
(Xr) 1 = ( r , 0 , 0 , 0 )  of L1; then )'r takes the value (0, rw,O, ic) in (Xr) v It  is 

(1) (l) (1) 
then easy to find a unique event (Xr) 1 of L 3 in such a way that (Xr)l --(Xr)l 

(3) (3) (1) 
is orthogonal to L l in (xr)  v Indeed, any event xr of L 3 has the form 

0) (3) 
(r+h,O,O, ict3). Then for xr --(Xr) 1 we obtain the value (h,0,0, ict3). If  we 

(3) (!) 
now impose the condition that (X~)l"[x~-(Xr)l]  (which has the value 

(1) (3) (1) 
--c2t3) must be null, we obtain for t 3 the value t 3 =0 ;  then, the event of L 3 
which we have found is (Xr) 1 = ( r + h , 0 , 0 , 0 ) .  

(3) 
On the other hand, if we consider the event (x  r)2 of LI,  ( -  r, 0, 0, ic~r/~o), 

(1) 
we establish in a similar way that (2~)2 =(0,  -r~o,0,  ic); then x~ - ( x ~ )  2 has 

0) (3) (D 
the value (2 r + h, O, O, ic(t 3 - ,r/o~ )) and the product ( X ~)2" [ x~ - ( x~ )2 ] has 

(1) (3) (1) 
the value - c2 ( t3  - g / c o ) ,  in such a way that the only value of t 3 that makes 
this product zero is 7r/~o. 

2 

N ~ 1 7 6 1 7 6  ( x r ) l - ( x r ) l  (1) 

"/(Xr)(3) 2--(Xr}22=(2r+h)2"- - " "(1) It  is clear that these values are not equal 

because of (30). 

As a consequence of this fact, the definition of rigid motion is not 
predetermined in the general case as happened in the previous cases with 
Definitions 7 and 9. In contrast we can decide between several op t ions - -  the 
following two for instance. 
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Definition 11. The motion of a set of particles is rigid when each pair of 
particles a re  rigidly joined according to Definition 10. 

Definition 12. The motion of a set of particles is rigid if there exist 
three particles rigidly joined in pairs according to Definition 10 and any one 
of the remaining particles is rigidly joined to these three according to the 
same definition. 

The first definition does not give six degrees of freedom whereas the 
second, which does give six degrees of freedom to the motion, is not as 
natural an extension of the Newtonian definition as the first. Nevertheless, 
considerations such as the possibility of introducing the concept of rigid 
body or the number of degrees of freedom become irrelevant when trying to 
choose an option. This is because when one develops the concept of rigid 
motion, one deliberately leaves out (because it is possible and necessary) 
any relation with dynamics. 

Simplicity can be a good reason for making a choice, and it is clear that 
Definition 11 is the simplest. For this reason it is interesting to generalize 
this definition to general relativity, and this can be done quite naturally. 
With a view to this, let us consider a four-dimensional differentiable 
manifold V 4, of class G 2, with a symmetric tensor field g(gij) of class C 1 in 
such a way that Vx E V4, gx is a nondegenerate indefinite bilinear form with 
signature (3, 1) on the tangent space T x and with time orientation. Then we 
can give the following definition: 

Definition 13. Consider two timelike world lines L and L'; let us say 
that L'  is rigidly joined to L (we can write this as L '~J(4)L ) when for every 
arbitrary point P'(x ')  of L', there exists a unique geodesic s  
passing through P '  which intersects orthogonally with L in such a way that 
if P is the point of intersection between F and L, and if the parameter t is  
such that F(to)-----P, F(tt)=--P', then the integral 

a(e, e,)= �89 
to 

(31) 

taken along F, with u i =d~i/dt,  is constant. 

In accordance with the previous observations, the following definition 
appears natural. 

Definition 14. A timelike world tube "r in V 4 is rigid when for two 
arbitrary world lines L and L' of it, the integral (31) taken along the 
geodesic F(~ i =~i(t))  passing through P '  E L '  which is orthogonal to L in P 
is independent of P and P'. 
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From this definition it is possible to derive the characterization given 
by Synge (t966). In fact if L is a given curve of a world tube r and if N(a ) 
represents an orthonormal tetrad in L ( x  i =xi(s))  with Xi(4)=A i we know 
that 

3~(~) -bA'X(.)J BJ ( a =  1,2, 3) (32) 
3s 

where b represents the first curvature of L, and W, B i are the unit tangent 
vector and the first normal vector, respectively. Then, denoting the origin of 
s by P0 E L ,  if P' is a point of r in such a way that the geodesic orthogonal 
to L which passes through P' intersects L at P, and if s and o represent the 
separations PoP and PP' (along the geodesic), respectively, and #i is the unit 
tangent vector to the geodesic PP'  at P, we will have 

X (~) =oldX(ff ~ (33) 

where X (") represents the Fermi coordinates of P '  with respect to L. But 
giJ~i~j=X(a)X(a) , where f~i=3~2/3x i, and then if r is rigid we have 

X( , )X  (~) =const ,  which is equivalent, as we know, to o U =0,  where oq is the 
rate of strain tensor. 

On the other hand, using the shear tensor Pq, we know that Pij =oij  
- �89 where 0 is the expansion and Pu the projection operator; then it is 
clear that oij = 0 is equivalent to Oij = 0 = 0, which is the definition given by 
Ehlers and Kundt (1962). 
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